I. OSE6115 SPRING 2013: HOMEWORK 1, DUE 01/23/2013

(1) Calculate the following convolutions:

1. \(\cos \omega_1 t \otimes \cos \omega_2 t \)

2. \(\cos \omega_1 t \otimes \sin \omega_2 t \)

3. \(\cos \omega_1 t \otimes \text{sinc} \left(\frac{\omega_1}{2\pi t} \right) \)

4. \(\exp \left(-\frac{x^2}{2\sigma^2} \right) \otimes \exp \left(i \frac{x^2}{2\sigma^2} \right) \)

5. \(\exp \left(-\frac{x^2+y^2}{2\sigma^2} \right) \otimes \exp \left(i \frac{x^2+y^2}{2\sigma^2} \right) \)

Plot qualitative figures for the results.

(2) Find the Fourier transform, and plot it qualitatively, for the function

\[
f(t) = \sum_{m=-10}^{10} \text{rect} \left(\frac{t - m T_o}{\tau} \right),
\]

where (a) \(T_o = 4\tau \), (b) \(T_o = 2\tau \), and (c) \(T_o = \tau \).

(3) Find and plot the Fourier transforms of the following functions:

1. \(f(x) = \text{rect} \left(\frac{x-d}{a} \right) + \text{rect} \left(\frac{x+d}{a} \right) \), with (i) \(d = 10a \) and (ii) \(d = 2a \).

2. \(f(x, y) = \left\{ \text{rect} \left(\frac{x-d}{a} \right) + \text{rect} \left(\frac{x+d}{a} \right) \right\} \text{rect} \left(\frac{y}{b} \right) \), with \(d = 10a \), \(b = 20a \).

3. \(f(x, y) = \left\{ \text{rect} \left(\frac{x-d}{a} \right) + \text{rect} \left(\frac{x}{a} \right) + \text{rect} \left(\frac{x+d}{a} \right) \right\} \text{rect} \left(\frac{y}{b} \right) \), with \(d = 10a \), \(b = 20a \).

4. \(f(t) = \sum_{n=0}^{\infty} r^n g(t - nT) \), where \(r \) and \(T \) are constants, \(|r| < 1 \), and the Fourier transform of \(g(t) \) is \(G(\omega) \).

(4) Calculate the convolution of \(f(x) = \text{rect} \left(\frac{x}{a} \right) \) with \(g(x) = \exp \left(i \frac{x^2}{2\sigma^2} \right) \) for \(\left(\frac{a}{\sigma} \right)^2 = 10, 1, 0.5, 0.1 \). You will need to write a computer program (in MATLAB, for example) to do this calculation.